Artelys Knitro, maintenant disponible pour ARM, s’ouvre au monde de l’embarqué !
Avec l’avènement des smartphones, le développement de l’IoT et de systèmes complexes tels que les véhicules autonomes, équipés d’une multitude de capteurs générant des données en temps réel, les opportunités d’implémenter des solutions de Machine Learning et d’Optimisation en embarqué se multiplient.
Pourquoi un solveur non linéaire en embarqué ?
Les méthodes d’optimisation sont essentielles en Machine Learning
Pendant la phase d’entraînement du modèle, un grand nombre de paramètres doit être ajusté afin de minimiser une fonction non linéaire. Par exemple, une caméra qui détecte les défauts sur une chaîne de production peut être entraînée sur un jeu de données contenant des images de produits bien finis et défectueux. Cet entraînement repose sur l’ajustement d’un grand nombre de paramètres afin de minimiser le taux d’erreur du système. Cela implique souvent la résolution d’un problème d’optimisation non linéaire.
On peut noter que dans la majorité des cas, le modèle est pré-entraîné sur le cloud. Cependant, il s’agit d’un processus long qui nécessite d’envoyer les données de l’appareil vers le serveur, et de mettre à jour les paramètres du modèle dans le sens inverse. Dans des situations où il faut que le système puisse répondre à de nouveaux scénarios en temps réel, il sera important de pouvoir entraîner le modèle localement.
De plus, dans le cas du traitement de données personnelles, une telle démarche facilite la protection des données puisqu’elles n’ont pas à être transmises.
Il y a des applications pour lesquelles il est nécessaire de résoudre un problème d’optimisation en temps réel
Les voitures autonomes, par exemple, utilisent le Machine Learning et l’optimisation de façon complémentaire. Le premier va permettre au système d’apprendre à identifier les obstacles statiques ou mobiles et la signalisation. Une fois ces données connues, le véhicule doit calculer une trajectoire vers la destination souhaitée qui tient compte de la forme de la route et des obstacles, assure la sécurité et le confort des voyageurs tout en minimisant la consommation d’énergie et le temps de trajet.
Il s’agit là d’un problème d’optimisation non linéaire, et l’optimisation embarquée est utilisée dans beaucoup d’autres domaines comme la stabilisation de drones ou encore l’atterrissage des fusées !




Améliorer la planification de production des transformateurs électriques grâce à des solutions d’intelligence artificielle
Améliorer la planification de production de transformateurs haute tension à l’usine Hitachi Energy de Varennes grâce à des solutions avancées d’intelligence artificielle.

Artelys accompagne la Commission de Régulation de l’Énergie (CRE) dans l’évaluation des niveaux d’incitation adéquats pour favoriser la performance des réseaux de distribution dans le cadre du TURPE 7
Artelys a réalisé une étude quantitative pour informer les propositions de niveaux cibles pour le TURPE 7, en analysant les résultats historiques et l’impact de l’intégration des données des compteurs communicants (Linky) dans les indicateurs mesurant la qualité de l’alimentation.

Le projet MARI s’élargit
Ces derniers mois, plusieurs nouveaux GRT européens ont rejoint avec succès MARI, la plateforme paneuropéenne d’activation de la réserve de remplacement (mFRR), dont l’algorithme d’enchère a été développé par Artelys.

Knitro 14.2 résout vos modèles non-convexes difficiles en un instant
– Nous avons le plaisir d’annoncer qu’Artelys Knitro 14.0 est maintenant disponible ! Cette nouvelle version permet aux entreprises de résoudre des problèmes complexes d’optimisation non linéaire avec une efficacité et une précision sans précédent.
s’abonner à nos newsletters